Il teorema di Incompletezza di Godel

19 marzo 2009

“Non domandarci la formula che mondi possa aprirti
sì qualche storta sillaba e secca come un ramo.
Codesto solo oggi possiamo dirti,
ciò che non siamo, ciò che non vogliamo.”

E. Montale – da Ossi di Seppia

godel

“Questa frase è falsa”

Riuscireste a dimostrarlo? Bene, questa proposizione si dice pertanto indecidibile.

In altre parole, non possiamo stabilire se è vera o falsa, infatti se fosse vera allora sarebbe falsa, mentre se fosse falsa allora sarebbe vera. Insomma, l’unico modo per risolvere la questione è trovare nuovi assiomi che possano completare il nostro sistema logico.

Analogamente alla Teoria dei Tipi Logici, utilizzata per trovare una soluzione al Pararadosso di Russell, è necessario dunque ampliare il sistema logico per poter dimostrare l’affermazione.

Ma anche nel nuovo sistema ci saranno affermazioni non dimostrabili. E allora? sarà necessario ampliare il sistema logico con nuovi assiomi…e così via. Non si può sfuggire all’incompletezza.

Con estremo rigore logico, Kurt Godel dimostrò che “qualsiasi sistema che permette di definire i numeri naturali è necessariamente incompleto”. Vale a dire che avremo sempre la possibilità di incontrare affermazioni di cui non si può dimostrare né la verità né la falsità.

Leggi il seguito di questo post »


M. C. Escher e il paradosso di Russell

10 febbraio 2009

“E’ stato confrontandomi con gli enigmi che ci circondano e considerando e analizzando le osservazioni da me fatte, che sono giunto alla matematica. Sebbene mi si possa davvero considerare digiuno di esperienza e consuetudine con le scienze esatte, spesso mi sembra di avere molte più cose in comune con i matematici che con i miei discepoli artisti”.

escher_gallery
Mauritius Cornelius Escher – Print Gallery

Possiamo comprendere il mondo nella sua totalità quando noi stessi ne siamo parte? Come potremmo essere osservati ed osservatori?

Il messaggio di quest’opera di Mauritius Cornelius Escher è chiaro: un uomo osserva il dipinto di un porto, il mare, una barca e la città con una galleria di quadri in cui un uomo osserva il dipinto di un porto…

Leggi il seguito di questo post »


Il paradosso di Russell

21 marzo 2008

“In un villaggio c’è un unico barbiere.
Il barbiere rade tutti (e soli) gli uomini che non si radono da soli.
Il barbiere rade sé stesso?”.

russell.jpg

Che ne pensate? Proviamo a rispondere:
1. se il barbiere rade sé stesso, allora per definizione il barbiere non rade sé stesso;
2. se il barbiere non rade sé stesso allora, dato che il barbiere rade tutti quelli che non si radono da soli, il barbiere rade sé stesso.

In entrambi i casi siamo arrivati ad una contraddizione!

E’ il noto Paradosso di Russell, che racconta un problema con il quale si scontrò il famoso filosofo e matematico. Come per Pitagora, l’inaspettato “imprevisto” si presentò sul più bello, proprio quando l’idea di un’opera come i Principia Matematica sembrava essere una costruzione solida e perfetta contenente tutto il sapere matematico.

Ma cosa accade di imprevisto? Per scoprirlo occorre seguire un piccolo ragionamento, che – siete avvisati – potrà causare qualche mal di testa. I più temerari possono comunque continuare a leggere…

Leggi il seguito di questo post »